Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 388 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Edge metric dimensions via hierarchical product and integer linear programming (2003.04045v1)

Published 9 Mar 2020 in math.CO

Abstract: If $S={v_1,\ldots, v_k}$ is an ordered subset of vertices of a connected graph $G$ and $e$ is an edge of $G$, then the vector $r_G(e|S) = (d_G(v_1,e), \ldots, d_G(v_k,e))$ is the edge metric $S$-representation of $e$. If the vertices of $G$ have pairwise different edge metric $S$-representations, then $S$ is an edge metric generator for $G$. The cardinality of a smallest edge metric generator is the edge metric dimension ${\rm edim}(G)$ of $G$. A general sharp upper bound on the edge metric dimension of hierarchical products $G(U)\sqcap H$ is proved. Exact formula is derived for the case when $|U| = 1$. An integer linear programming model for computing the edge metric dimension is proposed. Several examples are provided which demonstrate how these two methods can be applied to obtain the edge metric dimensions of some applicable graphs.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.