Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 388 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

The metric dimension of strong product graphs (1305.0363v1)

Published 2 May 2013 in math.CO

Abstract: For an ordered subset $S = {s_1, s_2,\dots s_k}$ of vertices and a vertex $u$ in a connected graph $G$, the metric representation of $u$ with respect to $S$ is the ordered $k$-tuple $ r(u|S)=(d_G(v,s_1), d_G(v,s_2),\dots,$ $d_G(v,s_k))$, where $d_G(x,y)$ represents the distance between the vertices $x$ and $y$. The set $S$ is a metric generator for $G$ if every two different vertices of $G$ have distinct metric representations. A minimum metric generator is called a metric basis for $G$ and its cardinality, $dim(G)$, the metric dimension of $G$. It is well known that the problem of finding the metric dimension of a graph is NP-Hard. In this paper we obtain closed formulae and tight bounds for the metric dimension of strong product graphs.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube