Papers
Topics
Authors
Recent
2000 character limit reached

Disentanglement, Multilinear Duality and Factorisation for non-positive operators

Published 6 Mar 2020 in math.FA and math.CA | (2003.03326v3)

Abstract: In previous work we established a multilinear duality and factorisation theory for norm inequalities for pointwise weighted geometric means of positive linear operators defined on normed lattices. In this paper we extend the reach of the theory for the first time to the setting of general linear operators defined on normed spaces. The scope of this theory includes multilinear Fourier restriction-type inequalities. We also sharpen our previous theory of positive operators. Our results all share a common theme: estimates on a weighted geometric mean of linear operators can be disentangled into quantitative estimates on each operator separately. The concept of disentanglement recurs throughout the paper. The methods we used in the previous work - principally convex optimisation - relied strongly on positivity. In contrast, in this paper we use a vector-valued reformulation of disentanglement, geometric properties (Rademacher-type) of the underlying normed spaces, and probabilistic considerations related to p-stable random variables.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.