Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

An ergodic correspondence principle, invariant means and applications (2003.03029v2)

Published 6 Mar 2020 in math.DS and math.CO

Abstract: A theorem due to Hindman states that if $E$ is a subset of $\mathbb{N}$ with $d*(E)>0$, where $d*$ denotes the upper Banach density, then for any $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that $d*\left(\bigcup_{i=1}N(E-i)\right) > 1-\varepsilon$. Curiously, this result does not hold if one replaces the upper Banach density $d*$ with the upper density $\bar{d}$. Originally proved combinatorially, Hindman's theorem allows for a quick and easy proof using an ergodic version of Furstenberg's correspondence principle. In this paper, we establish a variant of the ergodic Furstenberg's correspondence principle for general amenable (semi)-groups and obtain some new applications, which include a refinement and a generalization of Hindman's theorem and a characterization of countable amenable minimally almost periodic groups.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.