Papers
Topics
Authors
Recent
2000 character limit reached

Recognition of Smoking Gesture Using Smart Watch Technology

Published 5 Mar 2020 in cs.LG and stat.ML | (2003.02735v1)

Abstract: Diseases resulting from prolonged smoking are the most common preventable causes of death in the world today. In this report we investigate the success of utilizing accelerometer sensors in smart watches to identify smoking gestures. Early identification of smoking gestures can help to initiate the appropriate intervention method and prevent relapses in smoking. Our experiments indicate 85%-95% success rates in identification of smoking gesture among other similar gestures using Artificial Neural Networks (ANNs). Our investigations concluded that information obtained from the x-dimension of accelerometers is the best means of identifying the smoking gesture, while y and z dimensions are helpful in eliminating other gestures such as: eating, drinking, and scratch of nose. We utilized sensor data from the Apple Watch during the training of the ANN. Using sensor data from another participant collected on Pebble Steel, we obtained a smoking identification accuracy of greater than 90% when using an ANN trained on data previously collected from the Apple Watch. Finally, we have demonstrated the possibility of using smart watches to perform continuous monitoring of daily activities.

Citations (16)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.