Papers
Topics
Authors
Recent
2000 character limit reached

Learning-Based Link Scheduling in Millimeter-wave Multi-connectivity Scenarios (2003.02651v1)

Published 2 Mar 2020 in eess.SP, cs.LG, cs.NI, and stat.ML

Abstract: Multi-connectivity is emerging as a promising solution to provide reliable communications and seamless connectivity for the millimeter-wave frequency range. Due to the blockage sensitivity at such high frequencies, connectivity with multiple cells can drastically increase the network performance in terms of throughput and reliability. However, an inefficient link scheduling, i.e., over and under-provisioning of connections, can lead either to high interference and energy consumption or to unsatisfied user's quality of service (QoS) requirements. In this work, we present a learning-based solution that is able to learn and then to predict the optimal link scheduling to satisfy users' QoS requirements while avoiding communication interruptions. Moreover, we compare the proposed approach with two base line methods and the genie-aided link scheduling that assumes perfect channel knowledge. We show that the learning-based solution approaches the optimum and outperforms the base line methods.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.