Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s
GPT-5 High 14 tok/s Pro
GPT-4o 99 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 192 tok/s Pro
2000 character limit reached

Reveal of Domain Effect: How Visual Restoration Contributes to Object Detection in Aquatic Scenes (2003.01913v1)

Published 4 Mar 2020 in cs.CV

Abstract: Underwater robotic perception usually requires visual restoration and object detection, both of which have been studied for many years. Meanwhile, data domain has a huge impact on modern data-driven leaning process. However, exactly indicating domain effect, the relation between restoration and detection remains unclear. In this paper, we generally investigate the relation of quality-diverse data domain to detection performance. In the meantime, we unveil how visual restoration contributes to object detection in real-world underwater scenes. According to our analysis, five key discoveries are reported: 1) Domain quality has an ignorable effect on within-domain convolutional representation and detection accuracy; 2) low-quality domain leads to higher generalization ability in cross-domain detection; 3) low-quality domain can hardly be well learned in a domain-mixed learning process; 4) degrading recall efficiency, restoration cannot improve within-domain detection accuracy; 5) visual restoration is beneficial to detection in the wild by reducing the domain shift between training data and real-world scenes. Finally, as an illustrative example, we successfully perform underwater object detection with an aquatic robot.

Citations (26)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.