Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ADOD: Adaptive Domain-Aware Object Detection with Residual Attention for Underwater Environments (2312.06801v1)

Published 11 Dec 2023 in cs.CV and cs.RO

Abstract: This research presents ADOD, a novel approach to address domain generalization in underwater object detection. Our method enhances the model's ability to generalize across diverse and unseen domains, ensuring robustness in various underwater environments. The first key contribution is Residual Attention YOLOv3, a novel variant of the YOLOv3 framework empowered by residual attention modules. These modules enable the model to focus on informative features while suppressing background noise, leading to improved detection accuracy and adaptability to different domains. The second contribution is the attention-based domain classification module, vital during training. This module helps the model identify domain-specific information, facilitating the learning of domain-invariant features. Consequently, ADOD can generalize effectively to underwater environments with distinct visual characteristics. Extensive experiments on diverse underwater datasets demonstrate ADOD's superior performance compared to state-of-the-art domain generalization methods, particularly in challenging scenarios. The proposed model achieves exceptional detection performance in both seen and unseen domains, showcasing its effectiveness in handling domain shifts in underwater object detection tasks. ADOD represents a significant advancement in adaptive object detection, providing a promising solution for real-world applications in underwater environments. With the prevalence of domain shifts in such settings, the model's strong generalization ability becomes a valuable asset for practical underwater surveillance and marine research endeavors.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. C. Fu, R. Liu, X. Fan, P. Chen, H. Fu, W. Yuan, M. Zhu, and Z. Luo, “Rethinking general underwater object detection: Datasets, challenges, and solutions,” Neurocomputing, vol. 517, pp. 243–256, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925231222013169
  2. S. Xu, M. Zhang, W. Song, H. Mei, Q. He, and A. Liotta, “A systematic review and analysis of deep learning-based underwater object detection,” Neurocomputing, vol. 527, pp. 204–232, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925231223000656
  3. B. Recht, R. Roelofs, L. Schmidt, and V. Shankar, “Do imagenet classifiers generalize to imagenet?” in International conference on machine learning.   PMLR, 2019, pp. 5389–5400.
  4. D. Hendrycks and T. Dietterich, “Benchmarking neural network robustness to common corruptions and perturbations,” arXiv preprint arXiv:1903.12261, 2019.
  5. H. Liu, P. Song, and R. Ding, “Towards domain generalization in underwater object detection,” in 2020 IEEE International Conference on Image Processing (ICIP).   IEEE, 2020, pp. 1971–1975.
  6. Y. Chen, W. Li, C. Sakaridis, D. Dai, and L. Van Gool, “Domain adaptive faster r-cnn for object detection in the wild,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 3339–3348.
  7. C.-D. Xu, X.-R. Zhao, X. Jin, and X.-S. Wei, “Exploring categorical regularization for domain adaptive object detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 11 724–11 733.
  8. H.-K. Hsu, C.-H. Yao, Y.-H. Tsai, W.-C. Hung, H.-Y. Tseng, M. Singh, and M.-H. Yang, “Progressive domain adaptation for object detection,” in Proceedings of the IEEE/CVF winter conference on applications of computer vision, 2020, pp. 749–757.
  9. D. Li, Y. Yang, Y.-Z. Song, and T. M. Hospedales, “Deeper, broader and artier domain generalization,” in Proceedings of the IEEE international conference on computer vision, 2017, pp. 5542–5550.
  10. F. M. Carlucci, A. D’Innocente, S. Bucci, B. Caputo, and T. Tommasi, “Domain generalization by solving jigsaw puzzles,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 2229–2238.
  11. H. Li, S. J. Pan, S. Wang, and A. C. Kot, “Domain generalization with adversarial feature learning,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 5400–5409.
  12. D. Li, J. Zhang, Y. Yang, C. Liu, Y.-Z. Song, and T. M. Hospedales, “Episodic training for domain generalization,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 1446–1455.
  13. S. Shankar, V. Piratla, S. Chakrabarti, S. Chaudhuri, P. Jyothi, and S. Sarawagi, “Generalizing across domains via cross-gradient training,” arXiv preprint arXiv:1804.10745, 2018.
  14. W. Lin, J. Zhong, S. Liu, T. Li, and G. Li, “Roimix: Proposal-fusion among multiple images for underwater object detection,” in IEEE International Conference on Acoustics, Speech, and Signal Processing, 2020.
  15. B. Fan, W. Chen, Y. Cong, and J. Tian, “Dual refinement underwater object detection network,” in Computer Vision – ECCV 2020, A. Vedaldi, H. Bischof, T. Brox, and J.-M. Frahm, Eds.   Cham: Springer International Publishing, 2020, pp. 275–291.
  16. X. Chen, Y. Lu, Z. Wu, J. Yu, and L. Wen, “Reveal of domain effect: How visual restoration contributes to object detection in aquatic scenes,” arXiv preprint arXiv:2003.01913, 2020.
  17. X. Liang and P. Song, “Excavating roi attention for underwater object detection.”   IEEE, 2022.
  18. Z. Zhao, Y. Liu, X. Sun, J. Liu, X. Yang, and C. Zhou, “Composited fishnet: Fish detection and species recognition from low-quality underwater videos,” IEEE Transaction on Image Processing, vol. 30, pp. 4719–4734, 2021.
  19. H. Liu, P. Song, and R. Ding, “Towards domain generalization in underwater object detection,” in Proc. Int. Conf. Image Proc., 2020, pp. 1971–1975.
  20. Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by backpropagation,” in Proc. Int. Conf. Mach. Learn., 2015, pp. 1180–1189.
  21. M. Xu, J. Zhang, B. Ni, T. Li, C. Wang, Q. Tian, and W. Zhang, “Adversarial domain adaptation with domain mixup,” in Proc. AAAI Conf. Arti. Intell., 2019, pp. 6502–6509.
  22. R. Gong, W. Li, Y. Chen, and L. Van Gool, “Dlow: Domain flow for adaptation and generalization,” in Proc. IEEE Conf. Comput. Vision Pattern Recognit., 2019, pp. 2477–2486.
  23. Y. Chen, W. Li, C. Sakaridis, D. Dai, and L. Van Gool, “Domain adaptive faster r-cnn for object detection in the wild,” in Proc. IEEE Conf. Comput. Vision Pattern Recognit., 2018, pp. 3339–3348.
  24. S. Motiian, M. Piccirilli, D. Adjeroh, and G. Doretto, “Unified deep supervised domain adaptation and generalization,” in Proc. IEEE Int. Conf. Comput. Vision, 2017, pp. 5715–5725.
  25. S. Shankar, V. Piratla, S. Chakrabarti, S. Chaudhuri, P. Jyothi, and S. Sarawagi, “Generalizing across domains via cross-gradient training,” in Proc. Int. Conf. Learn. Repre, 2018.
  26. Q. Dou, D. Castro, K. Kamnitsas, and B. Glocker, “Domain generalization via model-agnostic learning of semantic features,” in Proc. Conf. Neur. Info. Proc. Systems, 2019, pp. 6447–6458.
  27. A. D’Innocente and B. Caputo, “Domain generalization with domain-specific aggregation modules,” in Proc. Germ. Conf. Pattern Recognit.   Springer, 2018, pp. 187–198.
  28. Y. Balaji, S. Sankaranarayanan, and R. Chellappa, “Metareg: Towards domain generalization using meta-regularization,” in Proc. Conf. Neur. Info. Proc. Systems, 2018, pp. 998–1008.
  29. D. Li, J. Zhang, Y. Yang, C. Liu, Y. Song, and T. Hospedales, “Episodic training for domain generalization,” arXiv:1902.00113, 2019.
  30. H. Huang, H. Zhou, X. Yang, L. Zhang, L. Qi, and A. Zang, “Faster r-cnn for marine organisms detection and recognition using data augmentation,” Neurocomputing, vol. 337, pp. 372–384, 2019.
  31. Y. Chen, P. Song, H. Liu, L. Dai, X. Zhang, R. Ding, and S. Li, “Achieving domain generalization for underwater object detection by domain mixup and contrastive learning,” Neurocomputing, vol. 528, pp. 20–34, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925231223000644
  32. J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 779–788.
  33. J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,” arXiv preprint arXiv:1804.02767, 2018.
Citations (1)

Summary

We haven't generated a summary for this paper yet.