Papers
Topics
Authors
Recent
2000 character limit reached

MOTS: Minimax Optimal Thompson Sampling

Published 3 Mar 2020 in cs.LG, math.ST, stat.ML, and stat.TH | (2003.01803v3)

Abstract: Thompson sampling is one of the most widely used algorithms for many online decision problems, due to its simplicity in implementation and superior empirical performance over other state-of-the-art methods. Despite its popularity and empirical success, it has remained an open problem whether Thompson sampling can match the minimax lower bound $\Omega(\sqrt{KT})$ for $K$-armed bandit problems, where $T$ is the total time horizon. In this paper, we solve this long open problem by proposing a variant of Thompson sampling called MOTS that adaptively clips the sampling instance of the chosen arm at each time step. We prove that this simple variant of Thompson sampling achieves the minimax optimal regret bound $O(\sqrt{KT})$ for finite time horizon $T$, as well as the asymptotic optimal regret bound for Gaussian rewards when $T$ approaches infinity. To our knowledge, MOTS is the first Thompson sampling type algorithm that achieves the minimax optimality for multi-armed bandit problems.

Citations (29)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.