Papers
Topics
Authors
Recent
Search
2000 character limit reached

Isometries between completely regular vector-valued function spaces

Published 2 Mar 2020 in math.FA | (2003.01566v1)

Abstract: In this paper, first we study surjective isometries (not necessarily linear) between completely regular subspaces $A$ and $B$ of $C_0(X,E)$ and $C_0(Y,F)$ where $X$ and $Y$ are locally compact Hausdorff spaces and $E$ and $F$ are normed spaces, not assumed to be neither strictly convex nor complete. We show that for a class of normed spaces $F$ satisfying a new defined property related to their $T$-sets, such an isometry is a (generalized) weighted composition operator up to a translation. Then we apply the result to study surjective isometries between $A$ and $B$ whenever $A$ and $B$ are equipped with certain norms rather than the supremum norm. Our results unify and generalize some recent results in this context.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.