Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Examining user reviews of conversational systems: a case study of Alexa skills (2003.00919v1)

Published 2 Mar 2020 in cs.SE and cs.HC

Abstract: Conversational systems use spoken language to interact with their users. Although conversational systems, such as Amazon Alexa, are becoming common and afford interesting functionalities, there is little known about the issues users of these systems face. In this paper, we study user reviews of more than 2,800 Alexa skills to understand the characteristics of the reviews and issues that are raised in them. Our results suggest that most skills receive less than 50 reviews. Our qualitative study of user reviews using open coding resulted in identifying 16 types of issues in the user reviews. Issues related to the content, integration with online services and devices, error, and regression are top issues raised by the users. Our results also indicate differences in volume and types of complaints by users when compared with more traditional mobile applications. We discuss the implication of our results for practitioners and researchers.

Citations (4)

Summary

We haven't generated a summary for this paper yet.