Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Multi-view Perspective of Self-supervised Learning (2003.00877v2)

Published 22 Feb 2020 in cs.CV, cs.LG, and stat.ML

Abstract: As a newly emerging unsupervised learning paradigm, self-supervised learning (SSL) recently gained widespread attention, which usually introduces a pretext task without manual annotation of data. With its help, SSL effectively learns the feature representation beneficial for downstream tasks. Thus the pretext task plays a key role. However, the study of its design, especially its essence currently is still open. In this paper, we borrow a multi-view perspective to decouple a class of popular pretext tasks into a combination of view data augmentation (VDA) and view label classification (VLC), where we attempt to explore the essence of such pretext task while providing some insights into its design. Specifically, a simple multi-view learning framework is specially designed (SSL-MV), which assists the feature learning of downstream tasks (original view) through the same tasks on the augmented views. SSL-MV focuses on VDA while abandons VLC, empirically uncovering that it is VDA rather than generally considered VLC that dominates the performance of such SSL. Additionally, thanks to replacing VLC with VDA tasks, SSL-MV also enables an integrated inference combining the predictions from the augmented views, further improving the performance. Experiments on several benchmark datasets demonstrate its advantages.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Chuanxing Geng (16 papers)
  2. Zhenghao Tan (1 paper)
  3. Songcan Chen (74 papers)

Summary

We haven't generated a summary for this paper yet.