Papers
Topics
Authors
Recent
Search
2000 character limit reached

On the Sample Complexity of Data-Driven Inference of the $\mathcal{L}_2$-gain

Published 29 Feb 2020 in eess.SY, cs.SY, and math.OC | (2003.00238v3)

Abstract: Lately, data-driven control has become a widespread area of research. A few recent big-data based approaches for data-driven control of nonlinear systems try to use classical input-output techniques to design controllers for systems for which only a finite number of (input-output) samples are known. These methods focus on using the given data to compute bounds on the $\mathcal{L}_2$-gain or on the shortage of passivity from finite input-output data, allowing for the application of the small gain theorem or the feedback theorem for passive systems. One question regarding these methods asks about their sample complexity, namely how many input-output samples are needed to get an approximation of the operator norm or of the shortage of passivity. We show that the number of samples needed to estimate the operator norm of a system is roughly the same as the number of samples required to approximate the system in the operator norm.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.