Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mixed Strategies for Robust Optimization of Unknown Objectives (2002.12613v2)

Published 28 Feb 2020 in cs.LG and stat.ML

Abstract: We consider robust optimization problems, where the goal is to optimize an unknown objective function against the worst-case realization of an uncertain parameter. For this setting, we design a novel sample-efficient algorithm GP-MRO, which sequentially learns about the unknown objective from noisy point evaluations. GP-MRO seeks to discover a robust and randomized mixed strategy, that maximizes the worst-case expected objective value. To achieve this, it combines techniques from online learning with nonparametric confidence bounds from Gaussian processes. Our theoretical results characterize the number of samples required by GP-MRO to discover a robust near-optimal mixed strategy for different GP kernels of interest. We experimentally demonstrate the performance of our algorithm on synthetic datasets and on human-assisted trajectory planning tasks for autonomous vehicles. In our simulations, we show that robust deterministic strategies can be overly conservative, while the mixed strategies found by GP-MRO significantly improve the overall performance.

Citations (11)

Summary

We haven't generated a summary for this paper yet.