Generating Followup Questions for Interpretable Multi-hop Question Answering
Abstract: We propose a framework for answering open domain multi-hop questions in which partial information is read and used to generate followup questions, to finally be answered by a pretrained single-hop answer extractor. This framework makes each hop interpretable, and makes the retrieval associated with later hops as flexible and specific as for the first hop. As a first instantiation of this framework, we train a pointer-generator network to predict followup questions based on the question and partial information. This provides a novel application of a neural question generation network, which is applied to give weak ground truth single-hop followup questions based on the final answers and their supporting facts. Learning to generate followup questions that select the relevant answer spans against downstream supporting facts, while avoiding distracting premises, poses an exciting semantic challenge for text generation. We present an evaluation using the two-hop bridge questions of HotpotQA.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.