Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Comparing (Empirical-Gramian-Based) Model Order Reduction Algorithms (2002.12226v1)

Published 27 Feb 2020 in math.OC, cs.NA, cs.SY, eess.SY, and math.NA

Abstract: In this work, the empirical-Gramian-based model reduction methods: Empirical poor man's truncated balanced realization, empirical approximate balancing, empirical dominant subspaces, empirical balanced truncation, and empirical balanced gains are compared in a non-parametric and two parametric variants, via ten error measures: Approximate Lebesgue $L_0$, $L_1$, $L_2$, $L_\infty$, Hardy $H_2$, $H_\infty$, Hankel, Hilbert-Schmidt-Hankel, modified induced primal, and modified induced dual norms, for variants of the thermal block model reduction benchmark. This comparison is conducted via a new meta-measure for model reducibility called MORscore.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.