Papers
Topics
Authors
Recent
Search
2000 character limit reached

Adapted tree boosting for Transfer Learning

Published 27 Feb 2020 in cs.LG and stat.ML | (2002.11982v2)

Abstract: Secure online transaction is an essential task for e-commerce platforms. Alipay, one of the world's leading cashless payment platform, provides the payment service to both merchants and individual customers. The fraud detection models are built to protect the customers, but stronger demands are raised by the new scenes, which are lacking in training data and labels. The proposed model makes a difference by utilizing the data under similar old scenes and the data under a new scene is treated as the target domain to be promoted. Inspired by this real case in Alipay, we view the problem as a transfer learning problem and design a set of revise strategies to transfer the source domain models to the target domain under the framework of gradient boosting tree models. This work provides an option for the cold-starting and data-sharing problems.

Citations (12)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.