Papers
Topics
Authors
Recent
2000 character limit reached

Marathi To English Neural Machine Translation With Near Perfect Corpus And Transformers

Published 26 Feb 2020 in cs.CL | (2002.11643v1)

Abstract: There have been very few attempts to benchmark performances of state-of-the-art algorithms for Neural Machine Translation task on Indian Languages. Google, Bing, Facebook and Yandex are some of the very few companies which have built translation systems for few of the Indian Languages. Among them, translation results from Google are supposed to be better, based on general inspection. Bing-Translator do not even support Marathi language which has around 95 million speakers and ranks 15th in the world in terms of combined primary and secondary speakers. In this exercise, we trained and compared variety of Neural Machine Marathi to English Translators trained with BERT-tokenizer by huggingface and various Transformer based architectures using Facebook's Fairseq platform with limited but almost correct parallel corpus to achieve better BLEU scores than Google on Tatoeba and Wikimedia open datasets.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.