Papers
Topics
Authors
Recent
Search
2000 character limit reached

Quasi-optimal and pressure robust discretizations of the Stokes equations by moment- and divergence-preserving operators

Published 26 Feb 2020 in math.NA and cs.NA | (2002.11454v1)

Abstract: We approximate the solution of the Stokes equations by a new quasi-optimal and pressure robust discontinuous Galerkin discretization of arbitrary order. This means quasi-optimality of the velocity error independent of the pressure. Moreover, the discretization is well-defined for any load which is admissible for the continuous problem and it also provides classical quasi-optimal estimates for the sum of velocity and pressure errors. The key design principle is a careful discretization of the load involving a linear operator, which maps discontinuous Galerkin test functions onto conforming ones thereby preserving the discrete divergence and certain moment conditions on faces and elements.

Citations (17)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.