Papers
Topics
Authors
Recent
2000 character limit reached

Analysis of Discriminator in RKHS Function Space for Kullback-Leibler Divergence Estimation

Published 25 Feb 2020 in cs.LG and stat.ML | (2002.11187v4)

Abstract: Several scalable sample-based methods to compute the Kullback Leibler (KL) divergence between two distributions have been proposed and applied in large-scale machine learning models. While they have been found to be unstable, the theoretical root cause of the problem is not clear. In this paper, we study a generative adversarial network based approach that uses a neural network discriminator to estimate KL divergence. We argue that, in such case, high fluctuations in the estimates are a consequence of not controlling the complexity of the discriminator function space. We provide a theoretical underpinning and remedy for this problem by first constructing a discriminator in the Reproducing Kernel Hilbert Space (RKHS). This enables us to leverage sample complexity and mean embedding to theoretically relate the error probability bound of the KL estimates to the complexity of the discriminator in RKHS. Based on this theory, we then present a scalable way to control the complexity of the discriminator for a reliable estimation of KL divergence. We support both our proposed theory and method to control the complexity of the RKHS discriminator through controlled experiments.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.