A General Method for Robust Learning from Batches
Abstract: In many applications, data is collected in batches, some of which are corrupt or even adversarial. Recent work derived optimal robust algorithms for estimating discrete distributions in this setting. We consider a general framework of robust learning from batches, and determine the limits of both classification and distribution estimation over arbitrary, including continuous, domains. Building on these results, we derive the first robust agnostic computationally-efficient learning algorithms for piecewise-interval classification, and for piecewise-polynomial, monotone, log-concave, and gaussian-mixture distribution estimation.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.