Papers
Topics
Authors
Recent
2000 character limit reached

Sharp large deviations for hyperbolic flows (2002.11007v3)

Published 25 Feb 2020 in math.DS and math.PR

Abstract: For hyperbolic flows $\varphi_t$ we examine the Gibbs measure of points $w$ for which $$\int_0T G(\varphi_t w) dt - a T \in (- e{-\epsilon n}, e{- \epsilon n})$$ as $n \to \infty$ and $T \geq n$, provided $\epsilon > 0$ is sufficiently small. This is similar to local central limit theorems. The fact that the interval $(- e{-\epsilon n}, e{- \epsilon n})$ is exponentially shrinking as $n \to \infty$ leads to several difficulties. Under some geometric assumptions we establish a sharp large deviation result with leading term $C(a) \epsilon_n e{\gamma(a) T}$ and rate function $\gamma(a) \leq 0.$ The proof is based on the spectral estimates for the iterations of the Ruelle operators with two complex parameters and on a new Tauberian theorem for sequence of functions $g_n(t)$ having an asymptotic as $ n \to \infty$ and $t \geq n.$

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube