Papers
Topics
Authors
Recent
2000 character limit reached

General Framework for Binary Classification on Top Samples

Published 25 Feb 2020 in cs.LG and stat.ML | (2002.10923v1)

Abstract: Many binary classification problems minimize misclassification above (or below) a threshold. We show that instances of ranking problems, accuracy at the top or hypothesis testing may be written in this form. We propose a general framework to handle these classes of problems and show which known methods (both known and newly proposed) fall into this framework. We provide a theoretical analysis of this framework and mention selected possible pitfalls the methods may encounter. We suggest several numerical improvements including the implicit derivative and stochastic gradient descent. We provide an extensive numerical study. Based both on the theoretical properties and numerical experiments, we conclude the paper by suggesting which method should be used in which situation.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.