Papers
Topics
Authors
Recent
2000 character limit reached

Biased Stochastic First-Order Methods for Conditional Stochastic Optimization and Applications in Meta Learning

Published 25 Feb 2020 in math.OC, cs.LG, and stat.ML | (2002.10790v2)

Abstract: Conditional stochastic optimization covers a variety of applications ranging from invariant learning and causal inference to meta-learning. However, constructing unbiased gradient estimators for such problems is challenging due to the composition structure. As an alternative, we propose a biased stochastic gradient descent (BSGD) algorithm and study the bias-variance tradeoff under different structural assumptions. We establish the sample complexities of BSGD for strongly convex, convex, and weakly convex objectives under smooth and non-smooth conditions. Our lower bound analysis shows that the sample complexities of BSGD cannot be improved for general convex objectives and nonconvex objectives except for smooth nonconvex objectives with Lipschitz continuous gradient estimator. For this special setting, we propose an accelerated algorithm called biased SpiderBoost (BSpiderBoost) that matches the lower bound complexity. We further conduct numerical experiments on invariant logistic regression and model-agnostic meta-learning to illustrate the performance of BSGD and BSpiderBoost.

Citations (50)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (4)

Collections

Sign up for free to add this paper to one or more collections.