Parsing Early Modern English for Linguistic Search
Abstract: We investigate the question of whether advances in NLP over the last few years make it possible to vastly increase the size of data usable for research in historical syntax. This brings together many of the usual tools in NLP - word embeddings, tagging, and parsing - in the service of linguistic queries over automatically annotated corpora. We train a part-of-speech (POS) tagger and parser on a corpus of historical English, using ELMo embeddings trained over a billion words of similar text. The evaluation is based on the standard metrics, as well as on the accuracy of the query searches using the parsed data.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.