Papers
Topics
Authors
Recent
2000 character limit reached

Group Membership Verification with Privacy: Sparse or Dense?

Published 24 Feb 2020 in cs.CR and cs.CV | (2002.10362v1)

Abstract: Group membership verification checks if a biometric trait corresponds to one member of a group without revealing the identity of that member. Recent contributions provide privacy for group membership protocols through the joint use of two mechanisms: quantizing templates into discrete embeddings and aggregating several templates into one group representation. However, this scheme has one drawback: the data structure representing the group has a limited size and cannot recognize noisy queries when many templates are aggregated. Moreover, the sparsity of the embeddings seemingly plays a crucial role on the performance verification. This paper proposes a mathematical model for group membership verification allowing to reveal the impact of sparsity on both security, compactness, and verification performances. This model bridges the gap towards a Bloom filter robust to noisy queries. It shows that a dense solution is more competitive unless the queries are almost noiseless.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.