Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Variance Loss in Variational Autoencoders (2002.09860v2)

Published 23 Feb 2020 in cs.LG and cs.NE

Abstract: In this article, we highlight what appears to be major issue of Variational Autoencoders, evinced from an extensive experimentation with different network architectures and datasets: the variance of generated data is significantly lower than that of training data. Since generative models are usually evaluated with metrics such as the Frechet Inception Distance (FID) that compare the distributions of (features of) real versus generated images, the variance loss typically results in degraded scores. This problem is particularly relevant in a two stage setting, where we use a second VAE to sample in the latent space of the first VAE. The minor variance creates a mismatch between the actual distribution of latent variables and those generated by the second VAE, that hinders the beneficial effects of the second stage. Renormalizing the output of the second VAE towards the expected normal spherical distribution, we obtain a sudden burst in the quality of generated samples, as also testified in terms of FID.

Citations (13)

Summary

We haven't generated a summary for this paper yet.