2000 character limit reached
Object 6D Pose Estimation with Non-local Attention
Published 20 Feb 2020 in cs.CV, cs.LG, and eess.IV | (2002.08749v1)
Abstract: In this paper, we address the challenging task of estimating 6D object pose from a single RGB image. Motivated by the deep learning based object detection methods, we propose a concise and efficient network that integrate 6D object pose parameter estimation into the object detection framework. Furthermore, for more robust estimation to occlusion, a non-local self-attention module is introduced. The experimental results show that the proposed method reaches the state-of-the-art performance on the YCB-video and the Linemod datasets.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.