Multi-graded Galilean conformal algebras (2002.08637v1)
Abstract: Galilean conformal algebras can be constructed by contracting a finite number of conformal algebras, and enjoy truncated $\mathbb{Z}$-graded structures. Here, we present a generalisation of the Galilean contraction procedure, giving rise to Galilean conformal algebras with truncated $\mathbb{Z}{\otimes\sigma}$-gradings, $\sigma\in\mathbb{N}$. Detailed examples of these multi-graded Galilean algebras are provided, including extensions of the Galilean Virasoro and affine Kac-Moody algebras. We also derive the associated Sugawara constructions and discuss how these examples relate to multivariable extensions of Takiff algebras. We likewise apply our generalised contraction prescription to tensor products of $W_3$ algebras and obtain new families of higher-order Galilean $W_3$ algebras.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.