Papers
Topics
Authors
Recent
2000 character limit reached

Learning Bijective Feature Maps for Linear ICA (2002.07766v5)

Published 18 Feb 2020 in cs.LG, cs.CV, and stat.ML

Abstract: Separating high-dimensional data like images into independent latent factors, i.e independent component analysis (ICA), remains an open research problem. As we show, existing probabilistic deep generative models (DGMs), which are tailor-made for image data, underperform on non-linear ICA tasks. To address this, we propose a DGM which combines bijective feature maps with a linear ICA model to learn interpretable latent structures for high-dimensional data. Given the complexities of jointly training such a hybrid model, we introduce novel theory that constrains linear ICA to lie close to the manifold of orthogonal rectangular matrices, the Stiefel manifold. By doing so we create models that converge quickly, are easy to train, and achieve better unsupervised latent factor discovery than flow-based models, linear ICA, and Variational Autoencoders on images.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.