Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

How to Solve Fair $k$-Center in Massive Data Models (2002.07682v2)

Published 18 Feb 2020 in cs.DS, cs.LG, and stat.ML

Abstract: Fueled by massive data, important decision making is being automated with the help of algorithms, therefore, fairness in algorithms has become an especially important research topic. In this work, we design new streaming and distributed algorithms for the fair $k$-center problem that models fair data summarization. The streaming and distributed models of computation have an attractive feature of being able to handle massive data sets that do not fit into main memory. Our main contributions are: (a) the first distributed algorithm; which has provably constant approximation ratio and is extremely parallelizable, and (b) a two-pass streaming algorithm with a provable approximation guarantee matching the best known algorithm (which is not a streaming algorithm). Our algorithms have the advantages of being easy to implement in practice, being fast with linear running times, having very small working memory and communication, and outperforming existing algorithms on several real and synthetic data sets. To complement our distributed algorithm, we also give a hardness result for natural distributed algorithms, which holds for even the special case of $k$-center.

Citations (37)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com