Papers
Topics
Authors
Recent
Search
2000 character limit reached

How to Solve Fair $k$-Center in Massive Data Models

Published 18 Feb 2020 in cs.DS, cs.LG, and stat.ML | (2002.07682v2)

Abstract: Fueled by massive data, important decision making is being automated with the help of algorithms, therefore, fairness in algorithms has become an especially important research topic. In this work, we design new streaming and distributed algorithms for the fair $k$-center problem that models fair data summarization. The streaming and distributed models of computation have an attractive feature of being able to handle massive data sets that do not fit into main memory. Our main contributions are: (a) the first distributed algorithm; which has provably constant approximation ratio and is extremely parallelizable, and (b) a two-pass streaming algorithm with a provable approximation guarantee matching the best known algorithm (which is not a streaming algorithm). Our algorithms have the advantages of being easy to implement in practice, being fast with linear running times, having very small working memory and communication, and outperforming existing algorithms on several real and synthetic data sets. To complement our distributed algorithm, we also give a hardness result for natural distributed algorithms, which holds for even the special case of $k$-center.

Citations (37)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.