Papers
Topics
Authors
Recent
2000 character limit reached

Decentralized Dynamic State Estimation with Bimodal Gaussian Mixture Measurement Noise

Published 13 Feb 2020 in eess.SP | (2002.07603v1)

Abstract: This paper proposes a decentralized dynamic state estimation (DSE) algorithm with bimodal Gaussian mixture measurement noise. The decentralized DSE is formulated using the Ensemble Kalman Filter (EnKF) and then compared with the unscented Kalman filter (UKF). The performance of the proposed framework is verified using the WSCC 9-bus system simulated in the Real Time Digital Simulator (RTDS). The phasor measurement unit (PMU) measurements are streamed in real-time from the RTDS runtime environment to MATLAB for real-time visualization and estimation. To consider the data corruption scenario in the streaming process, a bi-modal distribution containing two normal distributions with different weights and variances are added to the measurements as the noise component. The performances of both UKF and EnKF are then compared for by calculating the mean-squared-errors (MSEs) between the actual and estimated states.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.