Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Cross-sectional Stock Price Prediction using Deep Learning for Actual Investment Management (2002.06975v1)

Published 17 Feb 2020 in q-fin.PM

Abstract: Stock price prediction has been an important research theme both academically and practically. Various methods to predict stock prices have been studied until now. The feature that explains the stock price by a cross-section analysis is called a "factor" in the field of finance. Many empirical studies in finance have identified which stocks having features in the cross-section relatively increase and which decrease in terms of price. Recently, stock price prediction methods using machine learning, especially deep learning, have been proposed since the relationship between these factors and stock prices is complex and non-linear. However, there are no practical examples for actual investment management. In this paper, therefore, we present a cross-sectional daily stock price prediction framework using deep learning for actual investment management. For example, we build a portfolio with information available at the time of market closing and invest at the time of market opening the next day. We perform empirical analysis in the Japanese stock market and confirm the profitability of our framework.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.