2000 character limit reached
CAT: Customized Adversarial Training for Improved Robustness
Published 17 Feb 2020 in cs.LG and stat.ML | (2002.06789v1)
Abstract: Adversarial training has become one of the most effective methods for improving robustness of neural networks. However, it often suffers from poor generalization on both clean and perturbed data. In this paper, we propose a new algorithm, named Customized Adversarial Training (CAT), which adaptively customizes the perturbation level and the corresponding label for each training sample in adversarial training. We show that the proposed algorithm achieves better clean and robust accuracy than previous adversarial training methods through extensive experiments.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.