Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient graph construction for image representation (2002.06662v2)

Published 16 Feb 2020 in eess.IV and eess.SP

Abstract: Graphs are useful to interpret widely used image processing methods, e.g., bilateral filtering, or to develop new ones, e.g., kernel based techniques. However, simple graph constructions are often used, where edge weight and connectivity depend on a few parameters. In particular, the sparsity of the graph is determined by the choice of a window size. As an alternative, we extend and adapt to images recently introduced non negative kernel regression (NNK) graph construction. In NNK graphs sparsity adapts to intrinsic data properties. Moreover, while previous work considered NNK graphs in generic settings, here we develop novel algorithms that take advantage of image properties so that the NNK approach can scale to large images. Our experiments show that sparse NNK graphs achieve improved energy compaction and denoising performance when compared to using graphs directly derived from the bilateral filter.

Citations (14)

Summary

We haven't generated a summary for this paper yet.