Blind Adversarial Network Perturbations
Abstract: Deep Neural Networks (DNNs) are commonly used for various traffic analysis problems, such as website fingerprinting and flow correlation, as they outperform traditional (e.g., statistical) techniques by large margins. However, deep neural networks are known to be vulnerable to adversarial examples: adversarial inputs to the model that get labeled incorrectly by the model due to small adversarial perturbations. In this paper, for the first time, we show that an adversary can defeat DNN-based traffic analysis techniques by applying \emph{adversarial perturbations} on the patterns of \emph{live} network traffic.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.