Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 43 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Further Inference on Categorical Data -- A Bayesian Approach (2002.06439v2)

Published 15 Feb 2020 in math.ST, stat.ME, and stat.TH

Abstract: Three different inferential problems related to a two dimensional categorical data from a Bayesian perspective have been discussed in this article. Conjugate prior distribution with symmetric and asymmetric hyper parameters are considered. Newly conceived asymmetric prior is based on perceived preferences of categories. An extension of test of independence by introducing a notion of measuring association between the parameters has been shown using correlation matrix. Probabilities of different parametric combinations have been estimated from the posterior distribution using closed form integration, Monte-Carlo integration and MCMC methods to draw further inference from categorical data. Bayesian computation is done using R programming language and illustrated with appropriate data sets. Study has highlighted the application of Bayesian inference exploiting the distributional form of underlying parameters.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.