On split regular Hom-Leibniz-Rinehart algebras (2002.06017v1)
Abstract: In this paper, we introduce the notion of the Hom-Leibniz-Rinehart algebra as an algebraic analogue of Hom-Leibniz algebroid, and prove that such an arbitrary split regular Hom-Leibniz-Rinehart algebra $L$ is of the form $L=U+\sum_\gamma I_\gamma$ with $U$ a subspace of a maximal abelian subalgebra $H$ and any $I_\gamma$, a well described ideal of $L$, satisfying $[I_\gamma, I_\delta]= 0$ if $[\gamma]\neq [\delta]$. In the sequel, we develop techniques of connections of roots and weights for split Hom-Leibniz-Rinehart algebras respectively. Finally, we study the structures of tight split regular Hom-Leibniz-Rinehart algebras.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.