Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sound Event Detection by Multitask Learning of Sound Events and Scenes with Soft Scene Labels (2002.05848v1)

Published 14 Feb 2020 in cs.SD and eess.AS

Abstract: Sound event detection (SED) and acoustic scene classification (ASC) are major tasks in environmental sound analysis. Considering that sound events and scenes are closely related to each other, some works have addressed joint analyses of sound events and acoustic scenes based on multitask learning (MTL), in which the knowledge of sound events and scenes can help in estimating them mutually. The conventional MTL-based methods utilize one-hot scene labels to train the relationship between sound events and scenes; thus, the conventional methods cannot model the extent to which sound events and scenes are related. However, in the real environment, common sound events may occur in some acoustic scenes; on the other hand, some sound events occur only in a limited acoustic scene. In this paper, we thus propose a new method for SED based on MTL of SED and ASC using the soft labels of acoustic scenes, which enable us to model the extent to which sound events and scenes are related. Experiments conducted using TUT Sound Events 2016/2017 and TUT Acoustic Scenes 2016 datasets show that the proposed method improves the SED performance by 3.80% in F-score compared with conventional MTL-based SED.

Citations (36)

Summary

We haven't generated a summary for this paper yet.