Papers
Topics
Authors
Recent
2000 character limit reached

Generalized Autoregressive Neural Network Models

Published 13 Feb 2020 in stat.ME | (2002.05676v1)

Abstract: A time series is a sequence of observations taken sequentially in time. The autoregressive integrated moving average is a class of the model more used for times series data. However, this class of model has two critical limitations. It fits well onlyGaussian data with the linear structure of correlation. Here, I present a new model named as generalized autoregressive neural networks, GARNN. The GARNN is an extension of the generalized linear model where the mean marginal depends on the lagged values via the inclusion of the neural network in the link function. A practical application of the model is shown using a well-known poliomyelitis case number, originated analyzed by Zeger and Qaqish (1988),

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.