Superpixel Image Classification with Graph Attention Networks (2002.05544v2)
Abstract: This paper presents a methodology for image classification using Graph Neural Network (GNN) models. We transform the input images into region adjacency graphs (RAGs), in which regions are superpixels and edges connect neighboring superpixels. Our experiments suggest that Graph Attention Networks (GATs), which combine graph convolutions with self-attention mechanisms, outperforms other GNN models. Although raw image classifiers perform better than GATs due to information loss during the RAG generation, our methodology opens an interesting avenue of research on deep learning beyond rectangular-gridded images, such as 360-degree field of view panoramas. Traditional convolutional kernels of current state-of-the-art methods cannot handle panoramas, whereas the adapted superpixel algorithms and the resulting region adjacency graphs can naturally feed a GNN, without topology issues.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.