Papers
Topics
Authors
Recent
2000 character limit reached

Superpixel Image Classification with Graph Attention Networks (2002.05544v2)

Published 13 Feb 2020 in cs.LG, cs.CV, and stat.ML

Abstract: This paper presents a methodology for image classification using Graph Neural Network (GNN) models. We transform the input images into region adjacency graphs (RAGs), in which regions are superpixels and edges connect neighboring superpixels. Our experiments suggest that Graph Attention Networks (GATs), which combine graph convolutions with self-attention mechanisms, outperforms other GNN models. Although raw image classifiers perform better than GATs due to information loss during the RAG generation, our methodology opens an interesting avenue of research on deep learning beyond rectangular-gridded images, such as 360-degree field of view panoramas. Traditional convolutional kernels of current state-of-the-art methods cannot handle panoramas, whereas the adapted superpixel algorithms and the resulting region adjacency graphs can naturally feed a GNN, without topology issues.

Citations (45)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.