Papers
Topics
Authors
Recent
Search
2000 character limit reached

Self-supervised learning for audio-visual speaker diarization

Published 13 Feb 2020 in eess.AS, cs.LG, cs.MM, cs.SD, and stat.ML | (2002.05314v1)

Abstract: Speaker diarization, which is to find the speech segments of specific speakers, has been widely used in human-centered applications such as video conferences or human-computer interaction systems. In this paper, we propose a self-supervised audio-video synchronization learning method to address the problem of speaker diarization without massive labeling effort. We improve the previous approaches by introducing two new loss functions: the dynamic triplet loss and the multinomial loss. We test them on a real-world human-computer interaction system and the results show our best model yields a remarkable gain of +8%F1-scoresas well as diarization error rate reduction. Finally, we introduce a new large scale audio-video corpus designed to fill the vacancy of audio-video datasets in Chinese.

Citations (28)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.