Variance Reduced Coordinate Descent with Acceleration: New Method With a Surprising Application to Finite-Sum Problems (2002.04670v1)
Abstract: We propose an accelerated version of stochastic variance reduced coordinate descent -- ASVRCD. As other variance reduced coordinate descent methods such as SEGA or SVRCD, our method can deal with problems that include a non-separable and non-smooth regularizer, while accessing a random block of partial derivatives in each iteration only. However, ASVRCD incorporates Nesterov's momentum, which offers favorable iteration complexity guarantees over both SEGA and SVRCD. As a by-product of our theory, we show that a variant of Allen-Zhu (2017) is a specific case of ASVRCD, recovering the optimal oracle complexity for the finite sum objective.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.