Papers
Topics
Authors
Recent
Search
2000 character limit reached

Local WL Invariance and Hidden Shades of Regularity

Published 11 Feb 2020 in cs.CC, cs.LO, and math.CO | (2002.04590v2)

Abstract: The $k$-dimensional Weisfeiler-Leman algorithm is a powerful tool in graph isomorphism testing. For an input graph $G$, the algorithm determines a canonical coloring of $s$-tuples of vertices of $G$ for each $s$ between 1 and $k$. We say that a numerical parameter of $s$-tuples is $k$-WL-invariant if it is determined by the tuple color. As an application of Dvo\v{r}\'ak's result on $k$-WL-invariance of homomorphism counts, we spot some non-obvious regularity properties of strongly regular graphs and related graph families. For example, if $G$ is a strongly regular graph, then the number of paths of length 6 between vertices $x$ and $y$ in $G$ depends only on whether or not $x$ and $y$ are adjacent (and the length 6 is here optimal). Or, the number of cycles of length 7 passing through a vertex $x$ in $G$ is the same for every $x$ (where the length 7 is also optimal).

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.