Papers
Topics
Authors
Recent
2000 character limit reached

Asymptotic errors for convex penalized linear regression beyond Gaussian matrices

Published 11 Feb 2020 in stat.ML, cond-mat.dis-nn, and cond-mat.stat-mech | (2002.04372v1)

Abstract: We consider the problem of learning a coefficient vector $x_{0}$ in $R{N}$ from noisy linear observations $y=Fx_{0}+w$ in $R{M}$ in the high dimensional limit $M,N$ to infinity with $\alpha=M/N$ fixed. We provide a rigorous derivation of an explicit formula -- first conjectured using heuristic methods from statistical physics -- for the asymptotic mean squared error obtained by penalized convex regression estimators such as the LASSO or the elastic net, for a class of very generic random matrices corresponding to rotationally invariant data matrices with arbitrary spectrum. The proof is based on a convergence analysis of an oracle version of vector approximate message-passing (oracle-VAMP) and on the properties of its state evolution equations. Our method leverages on and highlights the link between vector approximate message-passing, Douglas-Rachford splitting and proximal descent algorithms, extending previous results obtained with i.i.d. matrices for a large class of problems. We illustrate our results on some concrete examples and show that even though they are asymptotic, our predictions agree remarkably well with numerics even for very moderate sizes.

Citations (16)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.