2000 character limit reached
Linking over cones for the Neumann Fractional $p-$Laplacian (2002.04273v1)
Published 11 Feb 2020 in math.AP
Abstract: We consider nonlinear problems governed by the fractional $p-$Laplacian in presence of nonlocal Neumann boundary conditions. We face two problems. First: the $p-$superlinear term may not satisfy the Ambrosetti-Rabinowitz condition. Second, and more important: although the topological structure of the underlying functional reminds the one of the linking theorem, the nonlocal nature of the associated eigenfunctions prevents the use of such a classical theorem. For these reasons, we are led to adopt another approach, relying on the notion of linking over cones.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.