Papers
Topics
Authors
Recent
2000 character limit reached

Linking over cones for the Neumann Fractional $p-$Laplacian (2002.04273v1)

Published 11 Feb 2020 in math.AP

Abstract: We consider nonlinear problems governed by the fractional $p-$Laplacian in presence of nonlocal Neumann boundary conditions. We face two problems. First: the $p-$superlinear term may not satisfy the Ambrosetti-Rabinowitz condition. Second, and more important: although the topological structure of the underlying functional reminds the one of the linking theorem, the nonlocal nature of the associated eigenfunctions prevents the use of such a classical theorem. For these reasons, we are led to adopt another approach, relying on the notion of linking over cones.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.