Papers
Topics
Authors
Recent
2000 character limit reached

A general theory of comparison of quantum channels (and beyond) (2002.04240v2)

Published 11 Feb 2020 in quant-ph

Abstract: We present a general theory of comparison of quantum channels, concerning with the question of simulability or approximate simulability of a given quantum channel by allowed transformations of another given channel. We introduce a modification of conditional min-entropies, with respect to the set F of allowed transformations, and show that under some conditions on F, these quantities characterize approximate simulability. If F is the set of free superchannels in a quantum resource theory of processes, the modified conditional min-entropies form a complete set of resource monotones. If the transformations in F consist of a preprocessing and a postprocessing of specified forms, approximate simulability is also characterized in terms of success probabilities in certain guessing games, where a preprocessing of a given form can be chosen and the measurements are restricted. These results are applied to several specific cases of simulability of quantum channels, including postprocessings, preprocessings and processing of bipartite channels by LOCC superchannels and by partial superchannels, as well as simulability of sets of quantum measurements. These questions are first studied in a general setting that is an extension of the framework of general probabilistic theories (GPT), suitable for dealing with channels. Here we prove a general theorem that shows that approximate simulability can be characterized by comparing outcome probabilities in certain tests. This result is inspired by the classical Le Cam randomization criterion for statistical experiments and contains its finite dimensional version as a special case.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.