Papers
Topics
Authors
Recent
Search
2000 character limit reached

Regularized Evolutionary Population-Based Training

Published 11 Feb 2020 in cs.NE and cs.LG | (2002.04225v4)

Abstract: Metalearning of deep neural network (DNN) architectures and hyperparameters has become an increasingly important area of research. At the same time, network regularization has been recognized as a crucial dimension to effective training of DNNs. However, the role of metalearning in establishing effective regularization has not yet been fully explored. There is recent evidence that loss-function optimization could play this role, however it is computationally impractical as an outer loop to full training. This paper presents an algorithm called Evolutionary Population-Based Training (EPBT) that interleaves the training of a DNN's weights with the metalearning of loss functions. They are parameterized using multivariate Taylor expansions that EPBT can directly optimize. Such simultaneous adaptation of weights and loss functions can be deceptive, and therefore EPBT uses a quality-diversity heuristic called Novelty Pulsation as well as knowledge distillation to prevent overfitting during training. On the CIFAR-10 and SVHN image classification benchmarks, EPBT results in faster, more accurate learning. The discovered hyperparameters adapt to the training process and serve to regularize the learning task by discouraging overfitting to the labels. EPBT thus demonstrates a practical instantiation of regularization metalearning based on simultaneous training.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.