Papers
Topics
Authors
Recent
Search
2000 character limit reached

Large-Scale Gradient-Free Deep Learning with Recursive Local Representation Alignment

Published 10 Feb 2020 in cs.LG, cs.NE, and stat.ML | (2002.03911v3)

Abstract: Training deep neural networks on large-scale datasets requires significant hardware resources whose costs (even on cloud platforms) put them out of reach of smaller organizations, groups, and individuals. Backpropagation, the workhorse for training these networks, is an inherently sequential process that is difficult to parallelize. Furthermore, it requires researchers to continually develop various tricks, such as specialized weight initializations and activation functions, in order to ensure a stable parameter optimization. Our goal is to seek an effective, neuro-biologically-plausible alternative to backprop that can be used to train deep networks. In this paper, we propose a gradient-free learning procedure, recursive local representation alignment, for training large-scale neural architectures. Experiments with residual networks on CIFAR-10 and the large benchmark, ImageNet, show that our algorithm generalizes as well as backprop while converging sooner due to weight updates that are parallelizable and computationally less demanding. This is empirical evidence that a backprop-free algorithm can scale up to larger datasets.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.