Papers
Topics
Authors
Recent
Search
2000 character limit reached

Robust Deep Learning Framework For Predicting Respiratory Anomalies and Diseases

Published 21 Jan 2020 in cs.SD, cs.LG, and eess.AS | (2002.03894v1)

Abstract: This paper presents a robust deep learning framework developed to detect respiratory diseases from recordings of respiratory sounds. The complete detection process firstly involves front end feature extraction where recordings are transformed into spectrograms that convey both spectral and temporal information. Then a back-end deep learning model classifies the features into classes of respiratory disease or anomaly. Experiments, conducted over the ICBHI benchmark dataset of respiratory sounds, evaluate the ability of the framework to classify sounds. Two main contributions are made in this paper. Firstly, we provide an extensive analysis of how factors such as respiratory cycle length, time resolution, and network architecture, affect final prediction accuracy. Secondly, a novel deep learning based framework is proposed for detection of respiratory diseases and shown to perform extremely well compared to state of the art methods.

Citations (44)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.